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ABSTRACT 
Super-exponential algorithm (SEA), constant modulus 
algorithm (CMA) and inverse filter criteria (IFC) us- 
ing higher-order statistics have been widely used for 
blind equalization. Chi, Feng and Chen have reported 
that SEA and IFC are equivalent under certain condi- 
tions. In this paper, we further prove that SEA, IFC 
and CMA are equivalent under certain conditions, and 
their convergence speed and computational load can 
be significantly improved as the given data are prepro- 
cessed by the well-known lattice linear prediction error 
(LPE) filter for both off-line processing and adaptive 
processing. Some simulation results are presented to 
support the analytic results and the proposed off-line 
and adaptive implementations. 

1. INTRODUCTION 
Blind equalization (deconvolution) is a signal process- 
ing procedure to recover the desired independent iden- 
tically distributed (i.i.d.) non-Guassian signal, denoted 
by ~ [ n ] ,  that is transmitted through an unknown lin- 
ear time-invariant (LTI) channel, denoted by h[n], with 
only measurements 

4.1 = 4.1 * h[n] + w[n] 

= 2 h-[b]u[. -k]+w[n] (1) 
k=-W 

where w[n] is additive noise, The problem of blind 
equalization arises comprehensively in a variety of ap- 
plications such as digital communications, seismic de- 
convolution, speech modeling and synthesis, ultrasonic 
nondestructive evaluation and image restoration. 

The FIR linear equalizer of order L, denoted by v[n], 
has been widely used to process 4.1 such that the 

This work was supported by the National Science Council 
under Grant NSC-89-2213-E007-073. 

equalizer output 

L 

eh1 = z[n] * v[n] = v[/i+c[n - IC] (2) 

= .bI* dnl+ w b I *  4n1 (by (1)) 
k=O 

approximates a.[. - T] (a # 0) where 

!d.I = +I * 4.1 (3) 

is the overall system after equalization. The amount of 
intersymbol interference (ISI) defined as [l] 

has been used as a performance index of the designed 
v[n]. The smaller IS1 implies the better performance. 

A number of blind equalization algorithms using higher- 
order statistics (cumulants and moments) have been 
reported for designing v[n] such as the well-known con- 
stant modulus algorithm (CMA) [Z], inverse filter cri- 
teria (IFC) [3] and super-exponential algorithm (SEA) 
[l]. Chi, Feng and Chen [4] have reported the equiv- 
alence of IFC and SEA under certain conditions. In 
this paper, we further prove the equivalence of IFC, 
SEA and CMA under certain conditions, thus sharing 
some properties reported in [4-71 under these condi- 
tions. Furthermore, efficient implementations of these 
algorithms with preprocessing by linear prediction er- 
ror (LPE) filter are presented including off-line process- 
ing and adaptive processing. 

2. BACKGROUND 
Let c u m t q ,  ..., zp}  denote the pth-order joint cumu- 
lant of random variables $1, ..., zp, and cum{e[n] : 
p ,... } = cum{zl = e[n] ,..., zp = e[.] ,... }. For ease of 
later use, let us define the following notations 
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(v[OI,v[ll, ..., V[LIlT 
(z[n], z[n - 11, ..., .[n - L])T 

( f k [ 4 ,  f k b  - 11, . e . ,  f k b  - L1>T 
(bo[n], bdnl, . .a ,  bL[.DT 

kth-order forward prediction error 
kth-order backward prediction error 

cum{u[n] : p,u*[n] : q }  
sign of real-valued a 

2.1. Lattice LPE Filter 

The kth-order lattice LPE filter with reflection coeffi- 
cients p1, p2, ..., pk, simultaneously provides the for- 
ward prediction error fk[n] and backward prediction 
error bk[n],  that can be expressed as follows: 

k 

f k [ 4  = c ak[i].[n - il (5) 

bk[n] = C a t [ k  - i]z[n - i] (6) 

i=O 
k 

i=O 

where the superscript '*' denotes complex conjugation, 
ak[O] = 1 and ak[l], ak[2], ..., ah[k], can be obtained 
from p1, p2, ..., pk through the computationally effi- 
cient Levinson-Durbin recursion. Two facts regarding 
fk[n] and b&] are as follows [8]: 

(FI) The kth-order LPE filter ak[i] is a whitening filter 

Rfb = E [fk[n]f,H[nI] g;,kI (7) 

for sufficiently large k where I is the ( L  + 1) x 
( L  + 1) identity matrix. 

as k is sufficiently large, i.e., 

(F2) x[n] and b[n] are causally invertible and 

Rb = E [b[n]bH[n]] = diag(P0, P I ,  ..., PL) (8) 

1.2. CMA 
['he CMA [2] finds the optimal equalizer v[n] by mini- 
deing the following cost function 

JCM(V) = E [('Y - le[nl12)2] (9) 

.here 7 = E[lz~[n]1*]/E[Iu[n]l~]. However, one has to 
sort to iterative optimization algorithms for searching 
le optimum v. 

3. SEA 
ldvi and Weinstein's SEA(p,q) [l] is an iterative al- 
dthm that updates v by the following equations at 
ch iteration: 

v = ~-ld/ll&-ldll (10) 

where Rx = E[x[n]xH[n]] and 

d = cum{e[nJ : p, e*[n] : q - 1, x*[n]}, p + q 1 3 
(11) 

The SEA is a computationally efficient algorithm with 
fast convergence speed (in terms of ISI) but no guar- 
antee of convergence for finite SNR and data. 

2.4. IFC 
The IFC(p,q) [3] find the optimum v by maximizing 
the following criteria: 

which is a highly nonlinear function of v[n] without 
a closed-form solution for the optimum v. Chi, Feng 
and Ch6n [4] proposed a fast gradient type iterative 
algorithm as follows: 

Algorithm 1: 
At the ith iteration, v[~] is obtained through the fol- 
lowing two steps. 
(Tl) Update G using (10) with e[.] = e['-'][n] used 

in d (see (l l)) ,  and obtain the associated e['][n]. 
(T2) If Jp,q(8)  > Jp! (di-l1), update vti] = 8, other- 

,Ii] = v[~-'] + p sgn(CF,,)8 (13) 

such that Jp,9(v[i]) > Jp,9(v[i-1]), and obtain 
the associated eli] [n] . 

Algorithm 1 requiring real z[n], or complex 4.1 and 
p = q, shares the computational efficiency and conver- 
gence speed of the SEA with guaranteed convergence. 

wise update via ? by 

3. EQUIVALENCE OF SEA(2,2), IFC(2,2) 
AND CMA 

Chi, Feng and Chen [4] have proven the following fact: 

(F3) SEA(p,q) and IFC(p,q) are equivalent as z[n] is 
real and p + q 2 3 or as ~ [ n ]  is complex and 

As mentioned in (F2), x[n] and b[n] are causally invert- 
ible. Therefore, deconvolution with x[n] is equivalent 
to deconvolution with b[n]. Let 

p = q > 2 .  

e[n] = vTb[n] (14) 

Replacing x[n] and Rx in (10) with b[n] and Rb, re- 
spectively, and replacing e[n] in (11) with the one given 
by (14) for p = q = 2 through some simplification yields 

9 = RC'E [le[n]12e[n]b*[n]] (15) 
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except for a scale factor. On the other hand, substitut- 
ing (14) into JCM(V) given by (9), one can easily show 
that the optimum 0 associated with the JCM(V) is the 
same as the one given by (15) except for a scale factor. 
Therefore, we have shown the following theorem: 

Theorem 1 .  Both SEA@, q) with p = q = 2 and CMA 
are equivalent. 

By (F3) and Theorem 1, we have the following fact: 

(F4) The CMA, IFC(p,q) and SEA@, q) are equivalent 
as p = q = 2. Therefore, they share some proper- 
ties reported in [4-71, such as perfect equalization 
property and relation to nonblind minimum mean 
square error (MMSE) equalizer. 

4. LATTICE IMPLEMENTATIONS . 

Let us present lattice implementations for SEA@, q), 
IFC(p,q) and CMA only for the case of p = q = 2 
below. 

4.1. Off-Line Processing 
Feng and Chi have reported two off-line lattice SEA 
(LSEA) [9] using bk[n] and fk[n], respectively. Next, 
let us present two lattice implementations for IFC that 
are modifications of Algorithm 1 with x[n] replaced by 
bk[n] and fk[n], respectively. 

LIFC-B Algorithm: At the ith iteration, vii] is ob- 
tained through the following two steps. 
(Sl) Compute G by (15) where e[n] = e['-l][n] is ob- 

tained by (14) at the (i - 1)th iteration. 
(S2) If J2,2(G) > J ~ , ~ ( V I ~ - ~ ] ) ,  update = G, oth- 

erwise update v[i] through a gradient-type opti- 
mization procedure with the gradient 

VJz,2 OC Sgn(C&)Rb(s - di-lJ). (16) 

LIFC-F Algorithm: Let 

where k is sufficiently large such that (Fl) applies to 
fk[nJ, At the ith iteration, v[j] is obtained through 
the same procedure as the previous LIFC-B algorithm 
except that b[n] and Rb are replaced by f k  [n] and &h, 

respectively, with e['][n] obtained by (17) and VJZJ 
obtained by 

VJ2,2 oc ~gn(C:,~)(? - vii-']). (18) 

A worthy remark regarding the proposed LIFC-B and 
LIFC-F algorithms is as follows: 

(Rl) The proposed LIFC-B and LIFC-F algorithms are 
computationally efficient (without need of matrix 
inversion) with guaranteed convergence, whereas 
the latter converges faster than the former since 
f k [ n ]  approximates an amplitude equalized signal 

(R2) As deriving the LIFC-B and LIFC-F algorithms 
(maximizing J 4 ,  one can readily obtain two lat- 
tice CMA algorithms (minimizing JcM), using 
bk[n] and fk[n], respectively, that also share the 
implementation merits of the LIFC-B and LIFC- 
F algorithms mentioned in (Rl). 

by (F1). 

4.2. Adaptive Processing 

Let v, denote the estimate of v as x[n] is processed. 
An adaptive SEA reported in [l] is as follows: 

vn+1 = vn t- pQn+1x*[n + l]e[n](r - le[nl12) (19) 

Vn+l = V*+l/IIVn+1ll (20) 

e[n -I- 11 = vT+lx[n + 11 (21) 

where p is the step size parameter, and 

QZ:l = (1 - p)Qll + px[n + l]xH[n + 11 (22) 

With Qn+l and x[n] in (19) replaced by RG1 and fk[n], 
one can obtain 

Vn+l = vtl + b{Y - le[nll2)e[n1fk*[n + 11 (23) 
e[n + 11 = v;f+lfk[n + I] (24) 

Lattice SE-IF-CM Algorithm. For each z[n + 11, 
two signal processing steps are performed as follows: 

(Ul) Obtain fk[n + 11 by processing z[n + 11 with the 
adaptive least squares lattice (LSL) LPE filter [8]. 

(U2) Update vn+l and e[n + 11 using (23) and (24), 
respectively. 

Two worthy remarks regarding the lattice SEIF-CM 
algorithm are as follows: 

(R3) The lattice SEIF-CM algorithm is exactly a lat- 
tice CMA algorithm since (U2) is the same as 
the adaptive CMA [2] and an adaptive IFC algo- 
rithm [3] except that fk[nJ is replaced with x[n]. 

(R4) The proposed lattice SEIF-CM algorithm with 
low computational load (without matrix multi- 
plication operations) converges faster than the 
adaptive SEA given by (19) through (22) and the 
adaptive CMA since the adaptive LSL algorithm 
in ( U l )  performs as a fast amplitude equalizer. 
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5. SIMULATION RESULTS 

Two examples are presented to support our analytic 
results and the lattice structure based algorithms. 

Example 1: Off-line Processing 

The source signal u[n] was assumed to be a 4QAM 
signal with unity variance and a real channel h[n] was 
taken from [l] as plotted in Figure l(a). The equal- 
izer +] was assumed to be a causal FIR filter of or- 
der L = 50. Thirty independent runs for data length 
N = 4096 and SNR = 20 dB (complex white Gaussian 
noise) were performed using CMA and SEA(2’2) with 
the initial condition v[n] = d[n-L/2], respectively. The 
averages of thirty independent estimates of equalizer 
v[n] obtained using CMA and SEA(2,2) are displayed 
in Figures l(b) and l(c), respectively, where only equal- 
izer real parts are shown since imaginary parts are al- 
most zero. These results justify Theorem l. 

Moreover, Algorithm 1, LIFC-B and LIFC-F algorithms 
and a gradient-based IFC algorithm were also employed 
to process the same simulation data. Figure 2 shows 
the average of the thirty J2,2)s with respect to itera- 
tion number associated with LIFC-F (k=50) algorithm 
(dash line), LIFC-B algorithm (dash-dotted line), Al- 
gorithm l (dotted line) and the gradient-based IFC al- 
gorithm (solid line). Figure 2 depicts that the LIFC- 
F algorithm and Algorithm 1 converge faster than the 
other two algorithms (see (Rl)) and the gradient-based 
IFC algorithm converges slower than all the other algo- 
rithms. These simulation results support the efficacy 
of the proposed LIFC-B and LIFC-F algorithms. 

Example 2: Adaptive Processing 
The source signal u[n] was assumed to be a 2-PAM 
(+l, -1) signal, The same channel h[n] as shown in 
Figure l(a) was used, and SNR = 20 dB (real white 
Gaussian noise). Figure 3 shows some simulation re- 
d t s  (average of thirty independent ISI’s versus itera- 
:ion number) for L = 24 using the adaptive SEA with 
I = q = 2 and p = 0.0026, the adaptive CMA with 
L = 0.00215 and the proposed adaptive lattice SEIF- 
:M algorithm with k = 24 and p = 0.002. Note that 
he value of the step size p used by each adaptive al- 
orithm was chosen through some trial-and-errors such 
!at its performance is “best” in terms of convergence 
3eed and ISI. One can see, from Figure 3, that the 
r-oposed adaptive lattice SEIF-CM algorithm (solid 
le) converges faster than the other two adaptive al- 
lrithms with IS1 slightly smaller than those associated 
;th the other two adaptive algorithms. These simula- 
In results justify the efficacy of the proposed adaptive 
tice SEIF-CM algorithm (see (R4)). 

6. CONCLUSIONS 
We have shown the equivalence of the CMA, SEA(p, q) 
and IFC(p,q) for p = q = 2 as presented in Theorem 
1 and (F4), and therefore, any performance analyses 
for one of them apply to the others. Furthermore, two 
computationally efficient off-line processing algorithms, 
LIFC-F and LIFC-B algorithms for p = q = 2 were 
presented, while the former is preferable to both the 
latter and Chi, Feng and Chen’s Algorithm 1 due to 
faster convergence (see (Rl)). For adaptive process- 
ing, a computationally efficient lattice SEIF-CM algo- 
rithm for p = q = 2 was presented that has compu- 
tational complexity similar to  the adaptive CMA and 
converges faster than both the adaptive SEA and the 
adaptive CMA with similar resultant IS1 (see (R3) and 
(R4)). The efficacy of the proposed adaptive lattice 
SEIF-CM algorithm and the proposed analytic results 
were stipported by some simulation results. As a final 
remark, for p # q or p = q # 2, lattice implementations 
of the SEA and IFC can be similarly developed. 
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Figure 2. Average of thirty Jz,z's associated with LIFC- 
F (k=50) (dash line) algorithm, LIFC-B algorithm (dash- 
dotted line), Algorithm 1 (dotted line) and the gradient- 
based IFC algorithm (solid line). 
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Figure 3. Simulation results (IS1 versus iteration number) 
using the adaptive CMA (dash line) with p = 0.00215, 
the adaptive SEA (dotted line) with p = q = 2 and p = 
0.0026 and the proposed adaptive lattice SEIF-CM algo- 
rithm (solid line) with k = 24 and p = 0.002, respectively. 
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Figure 1. Simulation results for N = 4096 and SNR= 20 
dB. (a) The channel impulse response; (b) average of thirty 
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